Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(1): e0262233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34986201

RESUMO

The micro- and macro-complications in diabetes mellitus (DM) mainly arise from the damage induced by Amadori and advanced glycation end products, as well as the released free radicals. The primary goal of DM treatment is to reduce the risk of micro- and macro-complications. In this study, we looked at the efficacy of aminoguanidine (AG) to prevent the production of early glycation products in alloxan-diabetic rabbits. Type1 DM was induced in rabbits by a single intravenous injection of alloxan (90 mg/kg body weight). Another group of rabbits was pre-treated with AG (100 mg/kg body weight) prior to alloxan injection; this was followed by weekly treatment with 100 mg/kg of AG for eight weeks. Glucose, insulin, and early glycation products (HbA1C and fructosamine) were measured in control, diabetic and AG treated diabetic rabbits. The effects of hyperglycemia on superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (Gpx), reduced glutathione (rGSH), nitric oxide, lipid peroxides, and protein carbonyl were investigated. Alloxan-diabetic rabbits had lower levels of SOD, CAT, Gpx, and rGSH than control rabbits. Nitric oxide levels were considerably greater. AG administration restored the activities of SOD, CAT, Gpx enzymes up to 70-80% and ameliorated the nitric oxide production. HbA1c and fructosamine levels were considerably lower in AG-treated diabetic rabbits. The observed control of hyperglycemia and amadori adducts in alloxan-diabetic rabbits by AG may be attributed to decrease of stress and restoration of antioxidant defenses.


Assuntos
Antioxidantes/administração & dosagem , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Guanidinas/administração & dosagem , Hiperglicemia/tratamento farmacológico , Aloxano , Animais , Antioxidantes/farmacologia , Estudos de Casos e Controles , Catalase/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/metabolismo , Esquema de Medicação , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Guanidinas/farmacologia , Hiperglicemia/induzido quimicamente , Hiperglicemia/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Coelhos , Superóxido Dismutase/metabolismo
2.
Cell Biochem Biophys ; 74(1): 67-77, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26972303

RESUMO

The non-enzymatic glycation reaction results in the generation of free radicals which play an important role in the pathophysiology of aging, diabetes, and cancer. 3-Deoxyglucosone (3-DG) is a dicarbonyl species which may lead to the formation of advanced glycation end products (AGEs). 3-DG also reacts with free amino group of nucleic acids resulting in the formation of DNA-AGEs. While the establishment of nucleoside AGEs has been revealed before, no extensive studies have been done to probe the role of 3-DG in the generation of immunogenicity and induction of cancer auto-antibodies. In this study, we report the immunogenicity of AGEs formed by 3-DG-Arg-Fe(3+) system. Spectroscopic analysis and melting temperature studies suggest structural perturbations in the DNA as a result of modification. Immunogenicity of native and 3-DG-Arg-Fe(3+) DNA was probed in female rabbits. The modified DNA was highly immunogenic eliciting high-titer immunogen-specific antibodies, while the unmodified form was almost non-immunogenic. We also report the presence of auto-antibodies against 3-DG-Arg-Fe(3+)-modified DNA in the sera of patients with different types of cancers. The glycoxidative lesions were also detected in the lymphocyte DNA isolated from selected cancer patients. The results show structural perturbations in 3-DG-Arg-Fe(3+)-DNA generating new epitopes that render the molecule immunogenic.


Assuntos
Anticorpos Antineoplásicos/imunologia , Autoanticorpos/imunologia , DNA de Neoplasias/imunologia , Desoxiglucose/análogos & derivados , Produtos Finais de Glicação Avançada/imunologia , Neoplasias/imunologia , Animais , Estudos de Casos e Controles , DNA de Neoplasias/metabolismo , Desoxiglucose/metabolismo , Feminino , Humanos , Neoplasias/metabolismo , Coelhos
3.
EXCLI J ; 14: 1057-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26933405

RESUMO

Osteoarthritis (OA) is characterized by inflammation of the knee joint, which is caused by accumulation of cytokines and C-reactive protein (CRP) in the extracellular matrix as an early immune response to infection. The articular cartilage destruction is discernible by elevated tumour necrosis factor-α (TNF-α). In this study, blood samples of knee osteoarthritis patients were analyzed for biochemical and physiological parameters based on the lipid profile, uric acid, total leukocyte count (TLC), hemoglobin percentage (Hb%) and absolute lymphocyte count (ALC). Furthermore, immunological parameters including TNF-α , interleukin-6 (IL-6) and CRP were analyzed. The presence of antibodies against hydroxyl radical modified collagen-II ((•)OH-collagen-II) was also investigated in arthritis patients using direct binding ELISA. The uric acid and lipid profiles changed extensively. Specifically, increased uric acid levels were associated with OA in both genders, as were enhanced immunological parameters. The TNF-α level also increased in both genders suffering from OA. Finally, auto-antibodies against OH-collagen II antigen were found in the sera of arthritis patients. These results indicated that immunological parameters are better predictors or indexes for diagnosis of OA than biochemical parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA